ProsPeR.T\TeX

A Few Tips

author
• Why use ProsPeR.\TeX \text{ cited from Trond Varslot, NO}\\
 (www.math.ntu.no/varslo/)

• Equations: as usual . . .

• Equations: options to display

• Equations: add some information to parts

• A complex equation and it’s structure cited from Trond Varslot, NO\\
 (www.math.ntu.no/varslo/)

• Display an image.eps step-by-step
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes:
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes
- using \LaTeX makes sense when you want to reuse some material of an article written in \LaTeX for your slides
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes
- using \LaTeX makes sense when you want to reuse some material of an article written in \LaTeX for your slides
- benefits from the quality of \LaTeX formatting at no extra work
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes
- using \LaTeX makes sense when you want to reuse some material of an article written in \LaTeX for your slides
- benefits from the quality of \LaTeX formatting at no extra work
- possibility to easily write slides with or without animation effects
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes
- using \LaTeX makes sense when you want to reuse some material of an article written in \LaTeX for your slides
- benefits from the quality of \LaTeX formatting at no extra work
- possibility to easily write slides with or without animation effects
- choose visual appearance among many predefined styles (or write your own)
Why use Prosper? (cited from Trond Varslot, NO)

- This may be a nice feature to guide the audience’s eyes
- using \LaTeX makes sense when you want to reuse some material of an article written in \LaTeX for your slides
- benefits from the quality of \LaTeX formatting at no extra work
- possibility to easily write slides with or without animation effects
- choose visual appearance among many predefined styles (or write your own)
- free to prepare and to present slides on any platform where \LaTeX and a PDF viewer are available
Equations: as usual ...

\[\Delta(g) \sim |g - g_c|^{z_v} \text{ kritischer Exponent} \]

\[\xi(g) \sim |g - g_c|^{-v} \text{ Korrelationslänge} \]

\[\Delta(g) \sim \xi^{-z}(g) \quad z = \text{dynamischer kritischer Exponent} \]

\[H = \int \Psi^\dagger \cdot \left[-\frac{\hbar^2}{2M} \frac{\partial^2}{\partial z^2} + \frac{\hbar}{\Delta} \hat{\Omega}^2 + \frac{g}{2}(\Psi^\dagger \cdot \Psi) \right] \cdot \Psi \, dz \]

\[\hat{\Omega}^2 = \begin{pmatrix} \Omega_+^2 & \Omega_+ \Omega_- \\ \Omega_+ \Omega_- & \Omega_-^2 \end{pmatrix} \]
Whether you define an equation with \[or \begin{equation}, you will get:

\[< \Delta p^2 > \sim t^{2/5} \]

Choose a larger font i.e. \large{\[equation\]}

\[< \Delta p^2 > \sim t^{2/5} \]

or use \psframebox[linecolor=name]{$ equation $}

\[
\begin{array}{c}
< \Delta p^2 > \sim t^{2/5}
\end{array}
\]
\[\hat{\psi}(\vec{x}) = \sum_n \sum_j \hat{a}_{n,j} W_n(\vec{x} - \vec{x}_j) \]
\[\hat{\psi}(\vec{x}) = \sum_n \sum_j \hat{a}_{n,j} W_n(\vec{x} - \vec{x}_j) \]
Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

\[
\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_\perp^2 pd\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)
\]

Diffraction

\(c\) : speed of sound
Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

\[\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla^2 p d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p) \]

Non-linear effects

- \(\beta_n\) : tissue nonlinearity factor
- \(\kappa\) : compressibility
- \(c\) : speed of sound
- \(\epsilon\) : scaling constant
Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

\[
\frac{\partial p}{\partial z} = \frac{c}{2} \int_{0}^{t} \nabla_{\perp}^{2} p \, d\tau + \epsilon \frac{\beta_{n} \sqrt{\kappa}}{c^{2}} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)
\]

Energy loss

\[L(\cdot) : \text{convolution operator}\]

\[c : \text{speed of sound}\]

\[\epsilon : \text{scaling constant}\]
Forward propagation of *acoustic pressure* in soft tissue may be modelled by the equation

\[
\frac{\partial p}{\partial z} = \frac{c}{2} \int_0^t \nabla_{\perp}^2 p \, d\tau + \epsilon \frac{\beta_n \sqrt{\kappa}}{c^2} p \frac{\partial p}{\partial t} + \epsilon \frac{1}{2c} \frac{\partial}{\partial t} L(p)
\]

The approximation

\[
\nabla^2 \approx \nabla_{\perp}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}
\]

is only good for weakly focused sound beams.
Display an image.eps step-by-step

Embrace images of different width/height with an invisible frame to avoid 'hopping'.

\[n = \frac{\mu}{g} \left(1 + 0(g^{2/3} \mu^{1/3}) \right) \]
Embrace images of different width/height with an invisible frame to avoid 'hopping'.

\[T = \frac{2\pi}{\zeta(\frac{2}{3})^{2/3}} \left(\frac{\mu}{g} \right)^{2/3} \]

\[n = \frac{\mu}{g} \left(1 + o\left(g^{2/3} \mu^{1/3}\right) \right) \]
Display an image.eps step-by-step

Embrace images of different width/height with an invisible frame to avoid 'hopping'.

\begin{align*}
T &= (\frac{\mu}{g})^{2/3} \\
T &= (\frac{\mu}{g})^{2/3} \\
T &= \frac{2\pi}{\zeta(\frac{3}{2})^{2/3}} (\frac{\mu}{g})^{2/3} \\
T &= (-\mu)^{2/3} \\
n &= 0 \\
n &= \frac{\mu}{g} (1 + 0(g^{2/3} \mu^{1/3}))
\end{align*}

define this line in ptsize8 – p.8/9
If you need a page without heading, here it is. Use the sequence:

\begin{slide}{}[R]\end{slide}

contents